Nb/Au/NbSe$_2$ hybrid Josephson junctions

To cite this article before publication: Wanghao Tian et al 2021 Supercond. Sci. Technol. in press https://doi.org/10.1088/1361-6668/ac0f8f

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2021 IOP Publishing Ltd.

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.
Nb/Au/NbSe$_2$ hybrid Josephson junctions

Wanghao Tian,1 Shixian Chen,1 Zuyu Xu,3 Dingding Li,1 Hongmei Du,1 Zihan Wei,1 Kaixuan Wu,1 Hancong Sun,2 Sining Dong,1 Yangyang Lv,1 Yong-Lei Wang,1 Dieter Koelle,3 Reinhold Kleiner,3 Huabing Wang,1,2,* and Peiheng Wu1

1Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210023, China
2Purple Mountain Laboratories, Nanjing University, Nanjing 211111, China
3Physikalisches Institut, Center for Quantum Science (CQ) and LISA$^+$, Universität Tübingen, D-72076 Tübingen, Germany

(Dated: June 10, 2021)

We fabricated thin film Nb/Au/NbSe$_2$ hybrid Josephson junctions by a dry transfer technique with only a single lithography step in the process. A thin Au layer is deposited on Nb to prevent oxidation during the fabrication process. The superconducting van der Waals (vdW) material NbSe$_2$ is placed on top of the Nb/Au layer. Electrical transport properties are studied in detail and are compared to numerical simulations. The current-voltage characteristics we observe are typical for superconductor-normal metal-superconductor junctions and we do not observe an effect of a potential insulating barrier between NbSe$_2$ and Au. The modulation of the critical current in magnetic fields indicates an inhomogeneous distribution of supercurrent density, presumably caused by the roughness of the Nb/Au interface to NbSe$_2$. Nevertheless, we observe clear integer Shapiro steps, indicating a sinusoidal current phase relation of junctions. We do not see an impact of the anisotropic s-wave and the charge density wave in NbSe$_2$ on the Josephson effects. Our method presents a viable and simple way to fabricate hybrid Josephson junctions between superconducting films and two-dimensional (2D) vdW superconducting materials, which might offer a chance for widespread applications.

I. INTRODUCTION

Josephson junctions exhibiting unusual properties have always been a hot topic in condensed matter physics. Such unusual properties can arise from the barrier layer between the superconducting electrodes of the junction, or from the unusual properties of the superconductors. Well known examples are junctions with a (ferro)magnetic barrier$^{1-3}$, junctions between a conventional and a d-wave superconductor4,5 or junctions involving a topological material6,7. Such junctions are not only interesting from the point of fundamental studies but also may lead to applications, e.g., in the context of quantum bits8,9, digital electronics7, field effect transistors10 or microwave bolometers11.

Recently, with the in-depth study of two-dimensional (2D) van der Waals (vdW) materials which are stable for even a thickness of only a few unit cells, contain only few atomic defects and have many unique properties12, electronic devices based on heterostructures from such materials became popular13,14. In particular, a variety of novel structures for Josephson devices have emerged and broadened the research field. Here – in contrast to standard Josephson junctions where all layers are fabricated by thin film deposition, the 2D vdW materials are used as superconducting electrodes15,16 or as barriers17.

In this work, we fabricated Nb/Au/NbSe$_2$ hybrid Josephson junctions. 2H-NbSe$_2$, one kind of the 2D vdW transition metal dichalcogenides (TMDs) becoming superconducting below about 7.3 K, has versatile electronic and chemical properties, as well as many unique features such as an anisotropic superconducting s-wave gap18, and the appearance of a charge density wave19. These features may make the material interesting for novel electronic devices.

Only few reports are available for Josephson junctions involving NbSe$_2$. All-NbSe$_2$ junctions and even SQUIDs are reported in Refs. 15 and 20. NbSe$_2$/Al junctions and SQUIDs have recently been reported in Ref. 21. A hybrid junction between 2D vdW crystals and superconducting thin films may be interesting for integrated circuits because of the flexibility of the film technology. Hybrid Josephson junctions might also be interesting for probing the physical properties of NbSe$_2$. In this respect, a Pb/Ag scanning tunneling microscope tip was used to form a Josephson junction to NbSe$_2$22.

During the fabrication procedures, a key point is to properly handle the interfacial structure between the deposited films and the 2D vdW materials. The problem is two-fold: On the one hand, one needs to get clean surfaces of the 2D vdW materials with as little as possible degradation. On the other hand, the 2D vdW material and the thin films need to be close enough to get a metallic contact, while trying to avoid the damage of the 2D vdW material by the hits of atoms during the film depositions. While a dry-transfer of the vdW crystals to metallic structures to obtain good ohmic contacts is not uncommon23, in the conventional Josephson junction processing, the interfaces are usually formed by depositing the thin films onto the 2D vdW materials. This may cause more defects in the 2D vdW materials during the deposition. Besides, the 2D vdW materials are exposed to air or are even exposed to chemicals over a long preparation time, making degradation likely.

In this paper, we propose a method to form Josephson junctions by transferring NbSe$_2$ directly onto the super-
conducting films, resulting in junctions between the films and the crystals. Transferring the crystal flakes onto the films, rather than depositing films subsequently, prevents the embedding of atoms into the 2D vdW material. The surfaces of the cleaved crystal flakes are exposed to air only a short time and no chemical is used in the subsequent processing, which decreases the risk of degeneration of the crystals. A disadvantage of the method, however, is the roughness of the films and thus the interface to the 2D vdW materials.

We measure the electrical transport properties of the Nb/Au/NbSe$_2$ junctions for temperatures T down to 2.9 K, under microwave irradiation up to 30.1 GHz and with in-plane magnetic fields up to 6.3 mT. The current-voltage characteristics (IVCs) are investigated and analyzed within numerical simulations based on an extension of the resistively and capacitively shunted junction model with an excess current (the so-called RCSJ+EX model). We also discuss the magnetic field and temperature dependence of the critical currents. The junctions in fact behave mostly conventional, and we do not see an impact of the NbSe$_2$ anisotropic s-wave and the charge density wave on the Josephson effects.

II. SAMPLE FABRICATION AND MEASUREMENT TECHNIQUES

In the beginning of the fabrication process, to obtain the electrodes contacting the NbSe$_2$ flakes, we pattern via direct laser writing photoresist covering a blank silicon substrate. Next, a 100 nm thick Nb film is deposited by magnetron sputtering and subsequently a layer of an about 2 nm thick Au film is deposited in-situ by electron-beam evaporation. The Au layer is intended to protect the surface of the Nb film from oxidation. After lift-off all Nb/Au electrodes are prepared. To obtain the NbSe$_2$ electrode, in a first step, about 1 μm thick flakes with an area of about 0.1 mm2 are peeled off from a bulk NbSe$_2$ crystal with scotch tape. The flakes are subsequently placed onto a piece of polydimethylsiloxane (PDMS) and are further cleaved by a scotch tape under a microscope until a flat smooth surface is obtained. Then, the PDMS holding the NbSe$_2$ flake is pasted to the bottom of a glass slide mounted on a compact setup which consists of a semifixed microscope able to move along the z axis, a shelf below the microscope for holding a glass slide, and a platform below the shelf to place the substrate. Both the shelf and the platform can move along x, y, and z direction individually, while the platform can also be rotated manually. To transfer the NbSe$_2$ flake site-specifically onto the substrate, we first find the flake on the microscope view field of the microscope then descend the microscope to view the substrate. We then descend the shelf slowly towards the substrate. When both the flake and the substrate can be seen in the view field of the microscope, one can align the shelf relative to the platform. Next, the substrate is heated to 70° C for one minute to weaken the adhesion between the NbSe$_2$ flake and the PDMS. Subsequently, the glass slide is slowly lifted, leaving the NbSe$_2$ flakes on the substrate in contact with the Nb/Au electrode. Finally, the sample is slightly milled for 3 seconds with an Ar ion beam to remove the redundant Au film on the Nb electrodes, in order to avoid short-circuit currents through the Au film when measuring. Note that the Au film remains underneath the NbSe$_2$ flake, thus the junction formed is actually a Nb/Au/NbSe$_2$ junction.

In the whole process, only one lithography step is necessary to form the electrodes, and the NbSe$_2$ flakes are exposed to air for less than 3 minutes without any contacts to chemicals. Also the Nb/Au electrodes were in air for only 3 minutes after the lift-off process. Still, however, some contamination may have occurred during this time and may be in the future avoidable by preparing the sample in an in-situ glove box.

The geometry of our samples is shown in Fig. 1. Fig. 1(a) sketches the overall geometry in the top graph, and a zoom of the junction area is shown in the lower graph. The yellow structures indicate the Nb electrodes, while the light blue structure indicates the NbSe$_2$ flake. (b) Optical microscope image of the junction area. The width of the junction is 10 μm. Connections of voltage and current leads are indicated.

Figure 1. (a) Sketch of the junction and the Nb contacts (top graph). The lower graph is a zoom of the junction area. The yellow structures indicate the Nb electrodes, while the light blue structure indicates the NbSe$_2$ flake. (b) Optical microscope image of the junction area. The width of the junction is 10 μm. Connections of voltage and current leads are indicated.
3. The other junctions had similar properties. In the supplement we display IVCs and inferred model parameters for these junctions, as well as selected microwave data for junction 2 and junction 4, and critical current vs. magnetic field patterns for junction 1 and junction 4. For junction 3 the NbSe$_2$ flake had a thickness of about 150 nm. The transition temperature T_c of this and other flakes used in our experiments is around 5 K, i.e. about 2 K less than the best values for NbSe$_2$ reported in the literature. The degradation presumably occurred during the 5 year storage time of the crystals in dry atmosphere.

We measured samples in a Gifford-McMahon refrigerator. The bias current was supplied by a homemade current source controlled by a computer while the voltage was filtered, amplified, and then measured. The microwave irradiation was generated by an Agilent N5183a MXG signal generator and transmitted through a semi-rigid cable mounted in the refrigerator with the core wire extruding at the end. The magnetic field was generated by a Helmholtz coil outside the refrigerator.

III. RESULTS

Figure 2 shows the temperature dependence of the sample resistance, measured across junction 3. The transition temperatures of Nb and NbSe$_2$ are indicated. The inset shows the resistance of the NbSe$_2$ flake for temperatures below 140 K. For both measurements the bias current is 10 μA.

Figure 2 shows the temperature dependence of the sample resistance, measured across junction 3 using the voltage and current terminals indicated in Fig. 1(b). At the critical temperature of Nb the resistance jumps from 20 Ω to about 0.9 Ω. The second jump occurs at the transition temperature of NbSe$_2$, at about 4.9 K. The inset of Fig. 2 shows the resistance of the NbSe$_2$ flake for temperatures below 140 K. The resistance decreases linearly down to about 40 K and starts to saturate at lower temperatures. There is a small jump at 7.5 K, and zero resistance is reached at 4.9 K. The small jump at 7.5 K is probably related to the onset of superconductivity in the Nb electrodes.

The IVC measured at $T = 2.9$ K is shown by the black line in the main panel of Fig. 3. The junction critical current I_c is about 310 μA, and the critical current density amounts to 620 A/cm2. For the full cycle of the bias current between ± 2 mA one finds a small hysteresis at negative current, however without a jump in voltage indicating capacitive or thermal effects. The hysteresis is likely to be caused by trapped flux in the NbSe$_2$ electrode. Apart from that, the IVC is single-valued and the voltage evolves smoothly in the resistive state. The overall IVC to a first glance reminds the IVC of an overdamped Josephson junction, as described in the resistively and capacitively shunted junction (RCSJ) model20,26,27 for a McCumber parameter $\beta_c = 0.1$, $i_{ex} = 0.65$ and $\alpha = 0.7$. The inset shows the temperature dependence of the junction critical current. The green line is the parabolic function $I_c \propto (1-T/4.5\text{K})^2$.

The IVC measured at $T = 2.9$ K is shown by the black line in the main panel of Fig. 3. The junction critical current I_c is about 310 μA, and the critical current density amounts to 620 A/cm2. For the full cycle of the bias current between ± 2 mA one finds a small hysteresis at negative current, however without a jump in voltage indicating capacitive or thermal effects. The hysteresis is likely to be caused by trapped flux in the NbSe$_2$ electrode. Apart from that, the IVC is single-valued and the voltage evolves smoothly in the resistive state. The overall IVC to a first glance reminds the IVC of an overdamped Josephson junction, as described in the resistively and capacitively shunted junction (RCSJ) model20,26,27 for a McCumber parameter $\beta_c = 0.1$, $i_{ex} = 0.65$ and $\alpha = 0.7$. The inset shows the temperature dependence of the junction critical current. The green line is the parabolic function $I_c \propto (1-T/4.5\text{K})^2$.
typical tunneling junctions.

For a quantitative description of the IVC we adopt the extended RCSJ model (RCSJ+EX model) introduced in Ref. 25. The model takes the effect of an excess current into account as an additional term in the RCSJ equations. In normalized form the RCSJ+EX model can be written as:

$$i + i_{e\alpha} \sin(f\tau) = \beta_c \frac{d^2\varphi}{dt^2} + \frac{d\varphi}{dt} + \sin(\varphi) + i_{e\alpha} \tanh(\alpha \frac{d\varphi}{dt}),$$

(1)

φ is the Josephson phase difference. Currents are normalized to I_c, and the time t is normalized as $\tau = 2\pi I_c R t / \Phi_0$.

The dc voltage across the junction can be calculated by averaging $d\varphi/d\tau$, which will be used further below to analyze IVCs under microwave irradiation. In this term the frequency f is measured in units of the characteristic frequency $f_c = I_c R/\Phi_0$ (50 GHz in our case). The last term on the right hand side is related to the excess current, bringing in the two additional parameters $i_{e\alpha}$ and α. For large voltages the additional term produces a constant current i_{ex} while for low voltages the product $i_{e\alpha} \sin(f\tau)$, which will be distinguished from $i_{e\alpha}$, constitutes an (voltage dependent) excess conductance.

In Ref. 25 the additional parameters have been related to the parameters of the microscopic OTBK model28.

In the RCSJ model β_c values below 0.3 or so have basically no impact on the shape of IVCs, compared to $\beta_c = 0$. To get a very rough estimate of this parameter let us first assume a potential vdW gap between Au and NbSe$_2$ of order 1 nm. This results in a capacitance of about 0.4 pF. Using the values of I_c and R quoted above we crudely estimate $\beta_c \approx 0.04$, which is rather indistinguishable from $\beta_c = 0$. There may also be stray capacitances, thus for convenience we have set $\beta_c = 0$ for the fit shown by the red line in Fig. 3. For the fit shown by the red line in Fig. 3 we have used $i_{ex} = 0.65$ and $\alpha = 0.7$. The resulting IVC matches the experimental data reasonably well. As shown in the inset of Fig. 3 the temperature dependence of the junction critical current (solid symbols) follows a parabolic temperature dependence above about 3.2 K, which is typical for SNS-type junctions. For the green line in the graph we have used the functionally $I_c \propto (1-T/4.5 K)^2$. The junction critical current goes to zero at about 4.5 K, i.e. somewhat below the T_c of NbSe$_2$.

Figure 4 displays by symbols the magnetic field dependence of the junction critical current, as obtained at $T = 2.9$ K. A voltage criterion at 5 μV was used to extract I_c from the IVCs. The direction of the applied magnetic field is in-plane and perpendicular to the 10 nm wide edge. Apparently, the experimental data strongly deviate from the Fraunhofer pattern, shown by the blue line, which would be obtained for a rectangular junction with homogeneous critical current density. Some deviations are likely to be caused by Abrikosov vortices in the NbSe$_2$ flakes29. Although the (in-plane) lower critical field is presumably still somewhat higher than the maximum field of 9 mT we applied30,31, we also have a relatively high transport current density in the NbSe$_2$ electrode which may lead to vortex entry at much smaller fields. Despite of such effects we must conclude that the Josephson critical current density of our junction is not very homogeneous. Using a London penetration depth of 110 nm for the Nb film32 and a value of 140 nm for NbSe$_2$33, plus the thicknesses of the Nb and NbSe$_2$ electrodes quoted above, we find an effective junction thickness34 of about 115 nm, which would correspond to a modulation period of the Fraunhofer pattern of 1.8 mT. The modulation period we see in experiment is slightly shorter, an effect which can arise from flux focusing into the junction area. Further, from the critical current density, the London penetration depths and the thicknesses of the superconducting electrodes, we estimate a value of the Josephson penetration depth34 of about 11 μm, i.e., we are in the short junction limit and self-field effects cannot account for the irregular critical current pattern. We also attempted to reconstruct the critical current density profile using the procedure of Ref. 35. However, we did not get a good agreement of the measured I_c vs. B patterns and the calculated ones resulting from the extracted critical current density profile. We are thus left with the qualitative statement of an inhomogeneous critical current density profile. Most likely, the inhomogeneity is caused by the roughness of the Nb/Au layer, which needs to be further improved, e. g. using the method described in Ref. 36.

Let us finally discuss IVCs under 30.1 GHz microwave irradiation. The measurements once again probe spatially integrated properties of the junction and can give additional information whether the Josephson current-phase relation is sinusoidal or not. We use the Eq. 1 to model the data. Figure 5(a) shows by the solid symbols...
the experimental IVCs of junction 3 for four different values of microwave power at $T = 2.9\, K$. One observes Shapiro steps at (dimensioned) voltages $V = n f \Phi_0$, where n is an integer and $n = 0$ denotes the zero-voltage state. There is no evidence of subharmonic steps appearing at non-integer values of n. This can be seen more clearly in Fig. 5(b), where the junction differential resistance is shown by the color scale as a function of microwave amplitude $P^{1/2}$ and voltage V across the junction. The dark horizontal lines give the position of the Shapiro steps. When Eq. 1 is used to model the data, all parameters are fixed by the analysis of the IVC in the absence of microwave, except for one additional point relating the applied microwave amplitude to the ac current I_{ac}. This calibration is done by matching the microwave-induced first zero of the critical current (the $n = 0$ step), as shown in the top graph of Fig. 6. The simulated IVCs obtained using this calibration are shown by lines in Fig. 5(a), and Fig. 6 shows in the middle and bottom panel the dependence of the height of the first and second Shapiro step as a function of microwave amplitude. For completeness, we also show by red lines the step heights for $n = 0$, 1 and 2 calculated within the standard RCSJ model, i.e. for $i_{ex} = 0$. In this case the first zero of the $n = 0$ step occurs at a 21% lower value of the ac current as compared to the RCSJ+EX simulations, and we thus multiplied I_{ac} by 1.27 to facilitate the comparison. Apart from this scaling the step heights, obtained within the RCSJ and the RCSJ+EX model, are similar.

Thus, although all of our results indicate that an SNS-type Josephson junction with a sinusoidal current-phase relation has formed at the interface to the NbSe$_2$, let us also consider other possibilities. First we note that the Nb/Au/NbSe$_2$ interface must carry a supercurrent, because otherwise a serial resistance would be present also

![Figure 5](image1)

![Figure 6](image2)
at low bias current. The observed behavior might arise exclusively in the NbSe$_2$ crystal, in which case the interface must carry a supercurrent higher than the bias currents we applied. In principle, the Shapiro steps could arise from some synchronization of vortices moving in the NbSe$_2$ crystal. Such a synchronization was indeed observed37. However, the dependence of the Shapiro step heights on microwave power strongly differs from the dependence expected from RCSJ-type simulations, which is not the case for our junctions. Another possibility is that the interface carries a supercurrent but in the form of a few local weak links connecting Nb and NbSe$_2$. Such weak links may cause the excess current we observe. However, the weak links typically strongly suffer from Joule heating, producing hysteresis in the IVCs. In external microwave fields one observes Shapiro steps that appear on the return branch of the IVCs in the presence of hysteresis38. All this is not the case for the junction we observe and we thus conclude that we have fabricated genuine SNS-type junctions at the interface.

IV. SUMMARY

In summary we propose a simple method to fabricate Nb/Au/NbSe$_2$ Josephson junctions with only one lithography step in the fabrication process. Rather than depositing the metallic electrodes on top of NbSe$_2$ we place the NbSe$_2$ flake on the pre-patterned Nb/Au electrodes, avoiding damming of the flake during thin film deposition and patterning. A drawback of our method is the roughness of the Au/NbSe$_2$ interface, which manifests itself in an inhomogeneous Josephson critical current density, as detected by the magnetic field dependence of the junction critical current. It seems possible that this roughness can be improved in the future. Electrically, the Au/NbSe$_2$ interface has a high transparency and our junctions behave very much like conventional SNS junctions, exhibiting some excess current in the current voltage characteristic and a parabolic temperature dependence of the junction critical current. In microwave fields we observe pronounced integer Shapiro steps but no sign of fractional steps, indicating a sinusoidal Josephson current-phase relation. The method proposed in this paper should be transferable also to other 2D vdW materials and thus may be interesting for (superconducting) electronics involving 2D vdW materials in contact to metallic electrodes.

ACKNOWLEDGMENTS

We gratefully acknowledge financial support by the National Natural Science Foundation of China (Grant Nos. 61727805, 11961141002, 61521001, 61771235), the National Key R&D Program of China (Grant No. 2018YFA0209002), Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves, and the EU-FP6-COST Action CA16218.